

Level: **T** Word Count: **778** 100th Word: solid (page 6)

Teaching Focus:

Text Features: Diagrams

Find the diagrams. How are they different than other pictures in the book? How do these diagrams help you when reading this book? Diagrams are drawings used to further explain something. Look for other examples of diagrams as you read this book.

Tips on Reading This Book with Children:

1. Read the title and make predictions about the story.

Predictions – after reading the title have students make predictions about the book.

2. Take a picture walk.

Talk about the pictures in the book. Implant the vocabulary as you take the picture walk.

Have students find one or two words they know as they do a picture walk.

- 3. Have students read the first page of text with you.
- 4. Have students read the remaining text aloud.
- 5. Strategy Talk use to assist students while reading.
 - Get your mouth ready
 - Look at the picture
 - Think...does it make sense
 - Think...does it look right
 - Think...does it sound right
 - Chunk it by looking for a part you know
- 6. Read it again.
- 7. Complete the activities at the end of the book.

The Amering Facts About Sound

by Buffy Silverman

Science Content Editor: Shirley Duke

rourkeeducationalmedia.com

Teacher Notes available at rem4teachers.com

Science Content Editor: Shirley Duke holds a bachelor's degree in biology and a master's degree in education from Austin College in Sherman, Texas. She taught science in Texas at all levels for twenty-five years before starting to write for children. Her science books include You Can't Wear These Genes, Infections, Infestations, and Diseases, Enterprise STEM, Forces and Motion at Work, Environmental Disasters, and Gases. She continues writing science books and also works as a science content editor.

© 2013 Rourke Educational Media

All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording, or by any information storage and retrieval system without permission in writing from the publisher.

www.rourkeeducationalmedia.com

Photo credits: Cover © VikaSuh, articular, Artisticco; Pages 2/3 © TDC Photography; Pages 4/5 © stockshot, JinYoung Lee; Pages 6/7 © Dragos Iliescu, Oguz Aral; Pages 8/9 © NatalieJean, Igor Kovalchuk, Brian Becker; Pages 10/11 © Michal Durinik, Christopher Parypa; Pages 12/13 © Gina Smith, Mark Herreid; Pages 14/15 © efirm, Avesun, Willyam Bradberry, CreativeNature. nl, dean bertoncelj, Henrik Larsson; Pages 16/17 © Golden Pixels LLC, Galushko Sergey, TDC Photography; Pages 18/19 © Susan Stevenson, Blue Door Education, Keith Publicover, R. Gino Santa Maria, irin-k, Lars Christensen, mast3r, Adisa, Elnur, Stephen Coburn; Pages 20/21 © SergiyN, Waj

Editor: Kelli Hicks

My Science Library series produced by Blue Door Publishing, Florida for Rourke Educational Media.

Library of Congress PCN Data

Silverman, Buffy. The Amazing Facts About Sound / Buffy Silverman. p. cm. -- (My Science Library) ISBN 978-1-61810-109-9 (Hard cover) (alk. paper) ISBN 978-1-61810-242-3 (Soft cover) Library of Congress Control Number: 2012930307

Rourke Educational Media Printed in the United States of America, North Mankato, Minnesota

rourkeeducationalmedia.com customerservice@rourkeeducationalmedia.com PO Box 643328 Vero Beach, Florida 32964

Teble of Contents

4

8

12

16

22

23

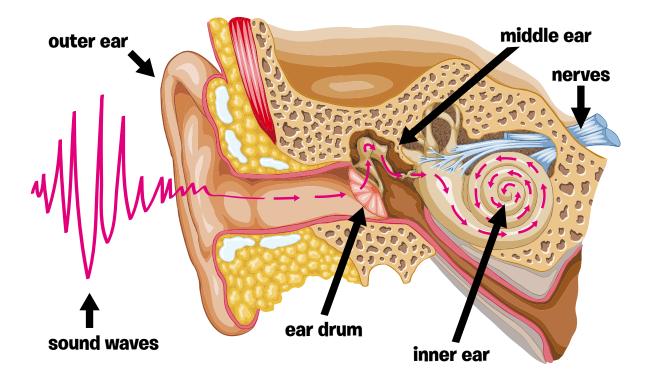
24

What is Sound? Speeding Sound High or Low? Loud or Soft? Show What You Know Glossary Index

What is Sound?

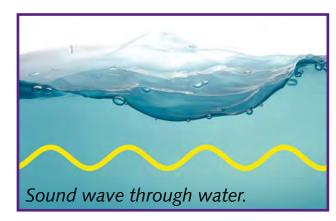
Listen to the sounds you hear while riding your bicycle to the park. Your bicycle chain clinks as it turns. Cars honk and tires screech on the street. In the park, birds sing and chipmunks chirp. The wind blows and leaves rustle. A friend shouts your name. Your brakes squeak as you squeeze them to stop. Your bicycle lock clicks in place. Every day you are surrounded by sounds.

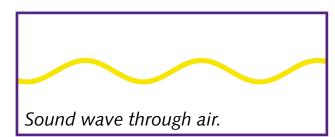
We cannot see sound. But sounds impact us every day. We learn about our surroundings by listening to sounds.



Sound is a form of **energy**. Pluck a guitar string and it vibrates, or moves back and forth. The **vibrations** form **sound waves**. Sound waves move through air, water, and solid material. As they travel, they collide with microscopic particles. Sound waves make these particles, called **molecules**, vibrate.

Knock on a door and molecules in the door vibrate. The moving molecules collide with air particles, sending sound waves through the air.




Sound waves in the air are collected by your outer ear. They travel to the **eardrum** and make it vibrate. Then, vibrations pass through bones in the middle ear to the inner ear. They bend tiny hairs in the inner ear, causing nerves to fire that send messages to the brain. Your brain hears sound.

Speeding Sound

Sound can only travel through material, called matter. Solids, liquids, and gases like air are all made of matter. The speed of sound is the speed that sound waves travel through matter. Sound travels faster through a solid than a liquid, and faster through a liquid than a gas. Molecules in a solid are packed together so vibrations move rapidly from molecule to molecule. Molecules in a liquid are farther apart. Molecules in a gas are farthest apart so vibrations travel slowest.

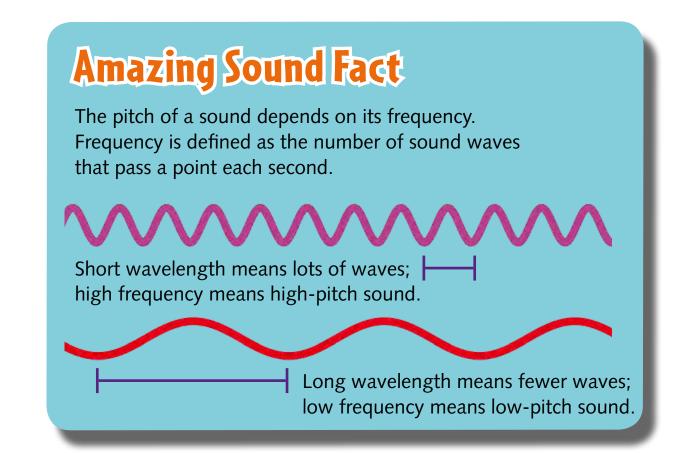
The sound of stomping elephant feet travels many times faster through the ground than through the air. Elephants detect these vibrations with their sensitive trunks and feet. They feel vibrations that are two miles (3.22 kilometers) away.

Sea lions hear better under water than on land, because sound waves travel faster through water than air.

Sound travels through 68° Fahrenheit (20°Celsius) air at about 768 miles per hour (1,236 km/hour) at sea level. Molecules have more energy and vibrate faster at higher temperatures so sound travels faster in warmer air. Most airplanes travel slower than the speed of sound. But some jets can break through the sound barrier.

When a jet travels at the speed of sound, known as Mach 1, sound waves press the air in front of the plane. To travel faster than sound, the plane must break through these waves. A speeding jet breaks through these waves, making an explosive sound called a sonic boom.

A cloud of vapor sometimes forms around a jet as it approaches the speed of sound. The lowered air pressure from the plane's lift and disturbed air around it condenses the moisture in the air, causing the vapor cloud.



High or Low?

A mosquito buzzes in your ear, making a high-pitched noise. A tugboat travels through fog, blasting its lowpitched horn. You hear many sounds with different pitches. The **pitch** of a sound depends on how frequently the particles in air vibrate before reaching your ear. A high, squeaky sound causes more vibrations per second. A low, rumbling sound causes fewer vibrations per second.

Musicians in a marching band play high and low-pitched sounds. Flutes make high-pitched sounds. Tubas make low-pitched sounds.

A bat makes high-pitched clicks as it flies through the night. You might see a bat as it swoops through the air, but you cannot hear it. Bats and other animals make and hear sounds that people cannot detect.

People hear sounds that vibrate between 20 and 20,000 times in a second. Bats hear sounds that vibrate up to 200,000 times a second. Sounds with a higher frequency than humans can hear are called **ultrasounds**.

Dogs, cats, dolphins, and mice can hear ultrasounds. Certain crickets, moths, and frogs make and hear ultrasounds, too.

Amazing Sound Fact

Bats use a special sense, called **echolocation**. They listen to **echoes** of their ultrasonic calls to find food and avoid obstacles.

15

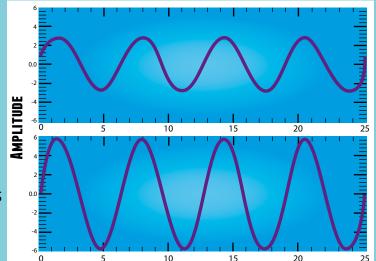
bat sonar returning sound waves

Loud or Soft?

Leaves rustle in a gentle breeze. A jet engine roars as the jet taxis down a runway. Some sounds are soft and others are loud. The amount of energy in a sound, called its intensity, determines how loud it is. Sounds with more intensity cause larger vibrations, which we hear as louder sounds. Tap a table lightly. Your tap makes a small vibration and a soft sound. Now hit the table hard. It vibrates more and makes a louder sound.

Which has more intensity? A whisper or a rock concert?

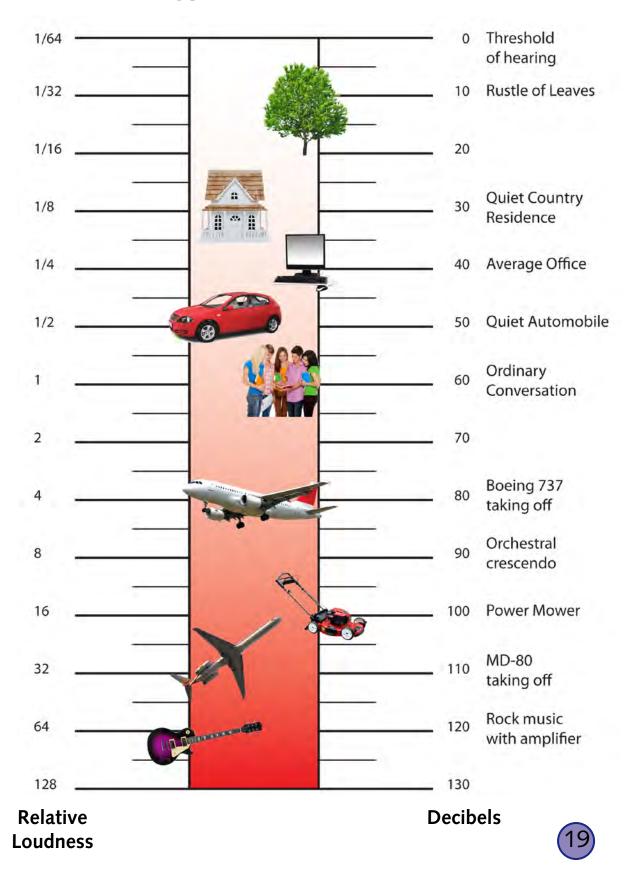
Amazing Sound Fact


When a drummer beats a drum hard, it makes a large vibration and a loud sound. If the drummer strikes the drum softly, the vibration is smaller and the sound quieter.

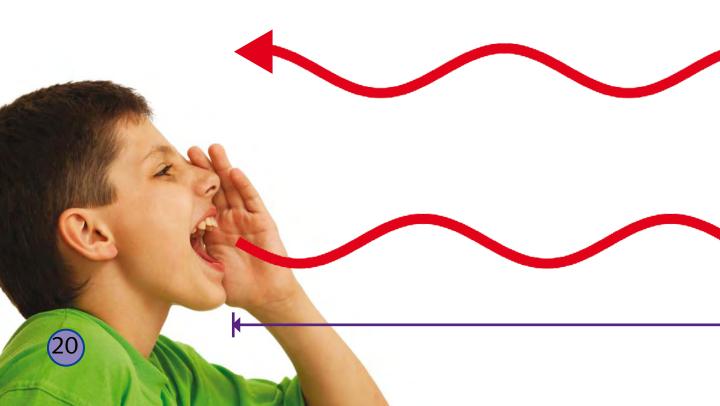
Amazing Sound Fact

The amount of energy in a sound wave is measured as its height or **amplitude**. Loud sounds have greater amplitude than soft sounds.

Machines called oscilloscopes measure amplitude. The sound wave at the top of the diagram has less energy and makes a softer sound than the sound wave at the bottom.

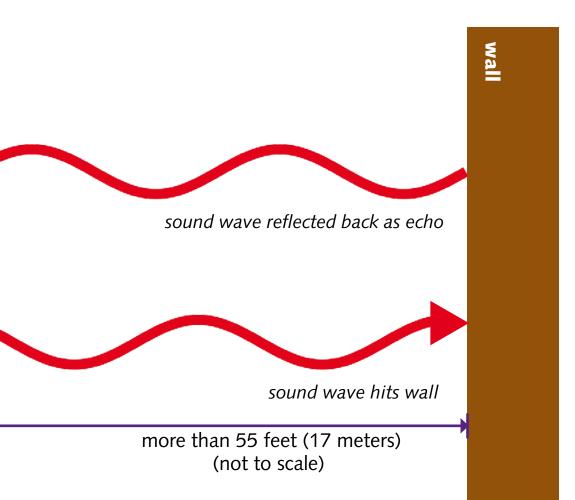

People measure the loudness of sound in a scale called **decibels**. Loud sounds that are greater than 85 decibels can damage your hearing. Long exposure to noise can also cause hearing loss. People who work on construction sites, in airports, and other loud places protect their ears by wearing ear protection.

A jackhammer creates a sound of 130 decibels.



Typical Sound Levels

Sound waves travel in all directions. What happens when a sound wave reaches an obstacle? If a wave reaches a soft, uneven surface, most of the energy is absorbed by it. But if a sound wave hits a hard, smooth surface, the wave is reflected back like light off a mirror. If you yell at a wall that is more than 55 feet (17 meters) away, the sound travels back after you hear the yell. The reflected sound is called an echo.


Architects and engineers build theatres that reflect sound for high quality listening experiences. They want audiences to get the most out of each and every performance.

Amphitheaters, both ancient and modern, have a curved shaped to create an area which echoes or amplifies sound.

Much of what you know about the world you learn by listening to sounds. Every day you hear soft and loud sounds. You make highpitched and low-pitched sounds when you sing and play an instrument. Sound waves bring us information about our world.

Show What You Know

- 1. What happens to molecules when a sound wave collides with them?
- 2. How does the sound wave of a high pitch sound differ from the sound wave of a low pitch sound?
- 3. Why are certain sounds louder than other sounds?

- **amplitude** (AM-pluh-tood): the maximum value or height of a wave
- decibels (DESS-uh-belz): units for measuring the volume of sounds
- **eardrum** (IHR-drum): part of the middle ear that vibrates when sound waves reach it
- **echoes** (EK-ohz): repetitions of a sound caused by the reflection of a sound wave off a hard, smooth surface
- **echolocation** (EK-oh-loh-KAY-shuhn): process by which bats, dolphins, and other animals find objects by making sounds and listening to their echoes
- **energy** (EN-ur-jee): active or working power, or force needed to do something
- matter (MAT-ur): anything that has mass and takes up space
- **molecules** (MAH-luh-kyoolz): the smallest units of a substance that has all the properties of that substance
- **pitch** (PICH): the highness or lowness of a sound, as determined by the rate of vibrations that make the sound
- **sound waves** (SOUND WAVEZ): series of vibrations in a solid, liquid, or gas that can be heard
- **ultrasounds** (UHL-truh-soundz): sounds whose frequency are too high for humans to hear
- vibrations (vye-BRA-shunz): rapid back and forth movements

Index

decibels 18, 19 echo(es) 15, 20, 21 energy 6, 10, 16, 18, 20 hearing loss 18 loudness of sound 18 pitch 12, 13 sonic boom 10 sound barrier 10 sound wave(s) 6, 7, 8, 9, 10, 13, 15, 18, 21 speed of sound 8, 10, 11 ultrasounds 14

Websites to Visit

http://www.grc.nasa.gov/WWW/k-12/airplane/sndwave.html http://www.questacon.edu.au/activities/musical_coathanger.html http://www.wildmusic.org/

About the Author

Buffy Silverman likes listening to snow crunch in winter, birds sing in spring, bullfrogs call in summer, and leaves swirl in autumn. When she's not exploring the great outdoors, she writes about science and nature.

Ask The Author! www.rem4students.com

Comprehension & Extension:

• Summarize:

How do sound waves travel through different types of matter? What is the result?

What is meant by pitch? What determines pitch?

• Text to Self Connection:

Explain what happens in your ear that helps you to hear sound.

Why do some animals hear sounds that you can't? Name some of these animals.

• Extension:

Show What You Know - Make a Model

Use pipe cleaners to show the difference in sound waves for high pitched sounds and low pitched sounds. Write a short explanation to go with your model.

Sight Words I Used:

barrier causing collide exposure particles sonic surrounded

Vocabulary Check:

Use glossary words in a sentence.

Forces, Energy, and Motion

My Science Library's rich, content-filled text and beautiful photographs bring science and the scientific process to life for readers. The series includes interesting facts about the Earth, the solar system, matter, energy, forces and motion, and life on our planet. The engaging text makes learning about science fun.

Books In *My Science Library*:

The Amazing Facts About Sound Analyze This: Testing Materials Atoms and Molecules Changing Matter: Understanding Physical and Chemical Changes Eating and the Digestive System Fossils and Rocks How Do Humans Depend on Earth? I Can Prove It! Investigating Science I Look Like My Mother Let's Investigate Light Plants as Food, Fuel, and Medicine The Wonderful Water Cycle

rourkeeducationalmedia.com